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ABSTRACT: The paper presents results of compression tests of perforated thin walled bars of very low slenderness (varying from 1 to 11).
The samples are made from typical low carbon steel and cut from the standard elements of an existing storage system. Because of the
elasto-plastic material properties and low slenderness of tested elements, samples are deforming mostly in a local way. Buckling forms are
generally similar in all samples, although depending on length several variants differing in the form and direction of movement of the side
walls can be observed. The final geometry of the samples (after reaching certain average strain and unloading) is documented by
photography and linear dimension measurements giving a good data for calibration of the theory of elasto-plasticity for large deformations.
Obtained critical forces are compared with the theoretical results obtained using theory of thin walled beams and finite element solutions

presented on LSCE 2016 and LSCE 2017 seminars.
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1. INTRODUCTION

The paper presents results of compression tests of elements presented in
Fig.1. It is the continuation of work presented on XXII and XXIII LSCE
conferences: thin-walled bars theory (Refs 6, 9, 10, 11) calculations as
well as final element method modelling (Refs 1, 2, 18-20) were
presented in Ref. 7, and in Ref. 8 elastic buckling forms were analysed.
Some calculations and early experiments were also presented in Ref. 15.

Fig. 1 Characteristic dimensions of tested elements (Ref. 15)

For the need of this paper a wide experimental campaign was
conducted. Because of the availability of the equipment we have
decided to start with the compression tests of elements of very low
slenderness ratio and fixed endings (later on the boundary condition
influence is analysed using FEM model).

2. DESCRIPTION OF EXPERIMENTAL TESTS

Elements chosen for testing are presented on Fig.1 and are made from a
typical low carbon steel (Ref. 13). Tested samples were 50, 100, 150,
200, 250, 300, 400 and 500 mm long, and were mounted in Instron
8802 universal testing machine using compressing plates with 5 mm
fixtures (see Fig. 2). Displacement speed was calculated as 4% of initial
length per minute and the end of the test condition was displacement

equal to 10% of initial length. Force and displacement were recorded
with the testing machine during the test, and after it the chosen
permanent displacements were measured manually (see Fig.5).

Fig. 2 Compressing plates with fixtures (Ref. 13)

Whole process was also analysed using ARAMIS digital image
correlation system [3]. This part of experiment is not presented in this
paper. For more information see Refs 13 and 14.

3. COMPRESSION TEST RESULTS

3.1 Numeration of the samples

Samples were cut from several elements, and although they should be
identical, in reality some differences can be seen in the obtained results.
From each element 2 sets of samples were obtained. The pairs are: (0.x
and 1.x), (2.x and 3.x.1), (3.x.2 and 3.x.3) and (3.x.4 and 3.x.5), where
x is the initial length of the sample in centimetres. There are some
exceptions to this rule: samples 3.5.1 and 3.15.2 are additional samples
created from leftovers of material, and other samples in these two series
have their numbers changed because of that (for example, sample that
should be named 3.5.1 becomes 3.5.2, 3.5.2 becomes 3.5.3 and so on).
Samples 3.10.1, 3.50.2 and 3.50.3 were cut improperly.

3.2 Equilibrium paths

Equilibrium paths obtained during the experiments are shown in Fig.3.
They are presented without any processing, especially initial fitting
stages are not cut from the graphs.
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Fig. 3 Equilibrium paths for tested elements of lengths of 5, 10, 15, 20, 25, 30, 40 and 50 cm

3.3 Critical force as the function of slenderness
From results presented in section 3.2 critical loads were determined. In
Fig.4 they are presented as the function of slenderness. Points marked

with X blue markers are correct values, points marked with red crosses
are incorrect values, point marked with square was calculated as force
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corresponding to plasticity limit, and the green line is the overall results
approximation with the second degree polynomial.
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Fig. 4 Critical force as the function of slenderness

Table 1. Permanent deformation measurements

3.4 Permanent deformation measurements

Before the test specimen’s initial length lo was measured. After the test
destroyed specimens were measured according to the Fig.5. As it can be
seen, selected measurements were: length (measured independently on
front and back side of the sample) - 11 and Iz, distance between flanges
in the buckling point - d, distance between the buckling point and the
end (always the same) of sample - e and permanent deflection - f.
Results of these measurements are written in the Table 1. Because of the
differences in buckling forms of samples of different lengths, additional
clarifications are given at the end of the table.

Fig. 5 Permanent deformation measurements (Ref. 13)

no. A |o |1 |z d e f no. A |0 |1 |2 d e f

[mm] [ [mm] [mm] [mm] [mm] [mm] [mm] | [mm] [mm] [mm] [mm] [mm]

05 1118 52.8| 499 498 82 258 151 125 | 5315 251 226 226 184 121 558
25 1131  534| 502 499 126 139| |225 | 53% 253\ 227 224 181 127 588
3251 | 5322 251 225 226 177 125  56.9

351 | 1086 513 475 475 26 144 3252 | 5341 252| 226 225 180 118 561
352 | 1048 495| 463 461 562 198 147 3253 | 5360 283| 227 224 182 116 566
353 | 1114 526 496 494 561 169  14.0 354 | 5308  252| 225 224 180 126 56.9
354 | 1101 520 484 481 541 156 13.6 3255 | 5302 251| 223 225 178 129 573
355 | 1118 528| 496 494 544 112 136 wos | 5335 52| 226 225 180 123 56.
356 | 1.084 512| 481 479 566 181  14.2 130 | 6372 30t 260 277 11 18 739
av5 | 1100 520| 487 485 623 178 142 230 | 6301 302| 263 275 176 163 749
110 [ 2139 101} 928 919 383 2651 |41 | 6389 302| 268 275 177 128 709
210 | 2154 101.7| 937 831| 345 447 253 3302 | 6406 303| 266 279 170 146 726
3101 | 2143 101.2| 934 813 305 385 222 3303 | 6333 301| 264 277 172 142 732
3102 | 2132 1007| 920 903 474 410 257 3304 | 6372  301| 262 279 164 140 743
3103 | 2175 1027| 940 834 [NM8B| 428  271| |3Goc | gaes  s01| 263 25 175 150 721
3104 | 2156 1018} 929  80.1 FTdld 440 2521 T o TITeues T 30| 264 277 172 141 734
3105 | 2162 1021| 937 816| 862 382 235 a0 820 01l 307 a2 17 157 103
av10 | 2152 1016( 932 845 433 411 251 a0 | sare 00| 32 a7 NN 17 108
3.15.2 | 2.982 141 131 132 104 23.7 29.0 3401 | 8.494 401 352 375 151 176 105
av.14 | 2.982 141 131 132 104 237 29.0 3402 | 8509 402 340 371 151 183 106
115 | 3219 152| 137 140 109 790 359 3403 | 8492 401| 338 371 149 182 107
215 | 3221 152| 137 139 111 692 351 3404 | 8479 400| 337 371 162 202 106
3151 | 3221 152 139 139 755 291 3.405 | 8471  400| 350 373 161 213 106
3153 | 3193  151| 137 138 104 702 328 av40 | s488  401| 345 373 152 190 106
31541 3236 153] 140 126 1205 798 2851 My 11061  s01| 427 466 180 217 138
3155 | 3179 150 137 137 | 102 648 314 250 | 1061  s01| 43 460 165 270 133
3156 | 3215 152) 139 126 [7169 822 27.3| lggn; | 1050  496| 427 462 170 243 142
av1s | 3212 152]) 138 135 768 744 314| 3505 | 1059 500| 465 420 | 000 219 -77.4
120 | 4257 201| 179 181 151 829 485 3503 | 1063 502| 466 421 000 230 -78.9
220 | 4267 202 178 181 150 868 473 3504 | 1057 499| 443 469 177 212 131
3201 | 4263 201 179 180 153 89.0 479 3505 | 1061 501| 413 462 174 243 137
3202 | 4278 202| 178 182 145 878 474 1058 500 429 466 173 237 136
3203 | 4259 201| 178 181 147 930 469 1061  501| 466 421 000 225 -78.2
3204 | 4252 201| 183 177 (MM 864 372 a0 | 1050 s00| 427 466 124 233 750
3205 | 4240 200| 179 179 152 858 47.8 1059  500| 427 466 124 233 107
av20 | 4259 201| 179 180 142 874 461 -
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AD d:

Symmetric — both sides outwards.

Symmetric — both sides outwards — the material ruptured at the measurement site.

Asymmetric — one side S-shaped, second side outwards — measurement between furthest points.

Asymmetric — both sides S-shaped — measurement between furthest points.

AD Iy, I, d and f: buckling form forced by fine trimming and polishing the ends of the sample .

AD averages: from all , from all shorter/longer I’s , from absolute values , from not forced , from forced .

AD lo: not precise cutting (differences of about 2 mm between different corners of the sample) .

3.5 Photographs of the samples after unloading

Because of limited length of the paper only selected photographs are
shown below. Figs 6-8 present samples of three different lengths: 5cm
samples are generally buckling inwards, 25cm samples are generally
buckling outwards, and 15 cm samples are the border between two
buckling forms.

Ea En B
& 49

Fig. 9 Samples with initial length equal to 50 cm.

In Fig. 9 two buckling forms observed in the 50 cm samples can be
seen: first one with flanges going outwards and second one with flanges

! going inwards. First one is the normal buckling form of samples of this
Fig. 7 Samples with initial length equal to 15 cm length, second one was forced by grinding the ends of the samples. It is
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interesting, that the maximum forces obtained from grinded samples are
not distinctly different from the normal ones.

4. NUMERICAL AND ANALYTICAL RESULTS

Theoretical solutions of the problem were presented in Refs 7, 8, 15.
Two main methods were used. The first one was finite element method
modeling using shell elements, elasto-plastic material (Ref. 5) and
nonlinear procedures. Several variants of this method were used. For the
second approach the thin-walled bar theory for elastic buckling of long
bars and Johnson-Ostenfeld approximation for plastic buckling of short
bars altogether with some ideas from standards (Refs 4, 16, 17) were
used. The most important results acquired with both methods are
presented in Fig.10.
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250 | ! B '
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Fig. 10 The comparison of the FEM calculation results to analytical
solutions derived with application of thin-walled bar theory (Ref. 7)

5. RESULTS ANALYSIS

In Fig.11 the experimental results on the critical force (maximum points
on the equilibrium paths shown in Fig.3) are presented in the form of
“x” markers. On that basis the green curve being a second degree
polynomial approximation of obtained results is also plotted. In the
same graph also the numerical results obtained with application of FEM
and shell modelling for two different types of boundary conditions
(fixed and hinged, see Fig.10 and Refs 7, 15 for boundary conditions
modelling details) are shown (dashed lines with the circles: blue —
hinged and dark red — fixed). The blue and dark red continuous lines
also visible in the graph represent the analytical approximations based
on thin-walled bars theory and Johnson-Ostenfeld curves. Because of
very low slenderness, the difference between hinged and fixed boundary
conditions in the analytical approach is very small. From obvious
reasons presented analytical approach is also quite inaccurate for very
short elements. It can be also observed, that finite element method
solution for fixed boundary conditions describes the actual experimental
results pretty well up to about 20cm of length, but it fails to correctly
describe it for longer elements. There are two possible reasons of that
fact. Firstly, for longer elements the assumption, that the tested elements
have ideally fixed ends, becomes less reasonable.

However, that reason only is clearly insufficient — the experimental
results for samples longer than 25cm are lower than the results
calculated for hinged boundary conditions. In this situation the
geometry imperfections seem to be the most important reason behind
the low maximum force values obtained from experiment.

In case of FEM modelling of the analysed compression tests the
observed failure mechanisms are predicted with good accuracy. Some
examples of failure mechanisms predicted with FEM application in the
form of Huber-Mises stress intensities contour plots on the deformed
unloaded sample are shown in Figs 12 and 13. In both cases (initial
length of the sample equal to 50 and 100 cm) the influence of the
boundary conditions is shown. What is more in case of the sample 50
cm long with boundary conditions named as “hinged” the predicted
failure mechanism is very similar to one characterized before and shown
in Fig. 9 as an exceptional one (the cross section walls after crossing
maximum point are rotating in each other direction).
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Fig. 11 Theoretical and experimental results comparison

Fig. 12 Exemplary failure mechanisms predicted with FEM application
(contour plots of Huber-Mises stress intensities on the deformed
unloaded sample) for 50 cm length sample obtained with different
boundary conditions: a) fixed, b) hinged (cf. with Fig. 9)

b)

Fig. 13 Exemplary failure mechanisms predicted with FEM application
(contour plots of Huber-Mises stress intensities on the deformed
unloaded sample) for 100 cm length sample obtained with different
boundary conditions: a) fixed, b) hinged

6. CONCLUSIONS

On the basis of the experimental test results presented in Fig.3 it is
possible to conclude, that in case of higher slenderness ratio the
repeatability of the test is quite good (with respect to the maximum
force value and overall equilibrium path). Having in mind that all
analyzed samples are rather of a low slenderness value the sample
behavior is determined not only by its geometry and elastic material
property but also by plasticity properties (Ref. 6). The characteristic
failure mechanisms are observed (see Fig. 7, 8 and 9) almost always in
the same spatial form. The only difference, that can be observed
between samples of different lengths is the direction of movement of
flanges. In the elements shorter than 15cm they are moving inwards, in
the longer ones outwards and elements, that are 15cm long, can buckle
in both ways (and also some mixed variants). What is even more
interesting, even after crossing the maximum point in the equilibrium
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path (critical force value) the overall answers of the compressed samples
are mostly the same (for the chosen slenderness ratio). Only in case of
fine trimming and polishing the ends of the longest sample (50cm) a
different failure mechanism is manifesting on the equilibrium path
(compare Fig. 3 for 50cm samples 3.50.2 and 3.50.3). In those cases the
failure mechanisms are shown in Fig.9: in the middle part of the
compressed element the web is bended outwards and the flanges are
rotating in each other direction after crossing maximum point, while in
most of the other cases the web was moving inwards and flanges were
moving outwards.

The presented in the Table 1 results on permanent deformation of the
elements released after the compression test, may be treated as a data for
verification of large deformation shell theories for elasto-plastic
materials. Such theories are well developed for the needs of the
modelling of cold forming technological processes for thin walled bars.
In Fig.11, the experimental results are shown against the numerical
results, obtained with application of FEM program ABAQUS with shell
modelling of the compressed element. It can be seen, that the
experimental results are laying alongside numerical results obtained for
fixed boundary conditions only for the shortest elements. Because of the
less significant meaning of the fixture shown on Fig.2 (and resulting
from that weakening of boundary conditions) and growing role of
imperfections, the longer elements are weaker than the numerical
predictions. Important role of geometry imperfections in thin-walled
bars is discussed for example in Ref. 12. It seems that for acquiring
better compatibility of numerical and experimental results, three
measures should be taken: firstly, joints should be used between the
testing machine and compression plates, to ensure hinged boundary
conditions and uniform pressure at the ends of the samples; secondly,
the calculations should describe boundary conditions more precisely;
and thirdly, imperfections should be taken into consideration. The tests
will be continued in the future.
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